NDGate
User’s Manual

Version 1.0
January 2008

Contents

1 Revision

2 Description

3 Installation

3.1 Requirements e

3.2 Imstallation e

3.2.1
3.2.2
3.2.3
3.24

Development environment
Bluetooth dongle
Bluetooth environment Lo

Internet L e e e e

3.3 Application configuration L

3.3.1

Variables e

4 Accessing the API
4.1 UDP-connections e e

4.2 Acommand s

4.3 General structures and need toknow

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13
4.3.14

4.3.15
4.3.16

Device address
SErvices
Phone book storages
List/storage entry type
Phone number L
SMS Storages v o i e e e
SMS storage types oo e
SMS satus o o o e
Encoding
Battery status
Multiparty actions L e
Events oL
Call status o e
Audio for headset and handsfree
4.3.14.1 Using Waveln and WaveOut
4.3.14.2 Using btAudioClient.exe
Error codes

Sub-error codes

© © o ©

10
10
10
11
12

5 Finder commands- Device/Service search and bond/unbond 24

5.1 Device finding/handling commands 24
5.1.1 startDeviceSearch - Start searching for available devices 24
5.1.2 stopDeviceSearch - Stop searching for available devices 24
5.1.3 getDeviceSearchStatus - Get status for device search 25
5.1.4 getServices - Get services for adevice L. 25
5.1.5 bond - Bond adevice 25
5.1.6 unbond - Unbond adevice 26
5.1.7 ping - Ping the gateway L o 26
5.1.8 getSupportedServices - Get the supported gateway services 27

5.2 Incomming unsolicited commands Lo 27
5.2.1 mnewDevice - New device found during device search 27

6 General commands for the serial, headset, handsfree, avrcp, obexftp, syncml, avrcp

and a2dp service 28
6.1 Connection commands Lo 28
6.1.1 connect - Connect toadevice 28
6.1.2 disconnect - Disconnect from a device oL 29
6.1.3 getStatus - Method name short description 29

7 Commands for serial, handsfree and headset service 30
7.1 Phone book specific commands L 30
7.1.1 getLists - Get available phone book storages 30
7.1.2 getListParams - Get parameters for a phone book storage 30
7.1.3 getList - Get all entries in a list/ from a storage 31

7.2 Device functionality commands 32
7.2.1 getEncoding - Get the current encoding for received data 32
7.2.2 getBatteryStatus - Get battery level and status 32
7.2.3 getSignalQuality - Get the signal quality 33
7.2.4 getValidRingVolume - Get valid ring volume interval 33
7.2.5 setRingVolume - Set the ring volume oL 33
7.2.6 getRingVolume - Get the current ring volume 34
7.2.7 setSilence - Set silence mode 34
7.2.8 getSilence - Get silence mode status Lo 35
7.2.9 setKeypressNotification - Enable or disable key press notification 35

7.3 Call specific commands e 35
7.3.1 dial - Dial anumber L L 35
7.3.2 answer - Answer an incoming call Lo 36
7.3.3 hangup - Hangup an ongoing or incoming call 36

7.4 SMS specific commands oL oL e 36
7.4.1 sendSMS - Create and send anew SMS 36
7.4.2 getSMSStorages - Get SMS storages for a storage type 37
7.4.3 setSMSStorage - Set the storage for a SMS storage type 37
7.4.4 readSMS - Read a SMS from a storage 38
7.4.5 getSMSList - Get all SMSes in a storage Lo 38
7.4.6 setSMSNotification - Enable or disable SMS notification 39

7.5 Incomming unsolicited commandso 39

7.5.1 newSMS - New SMS received 39

ii

7.5.2
7.5.3

ring - New incoming call e

number - Incoming number oL oL oL

7.5.4 keypress - A key has been pressed L

8 Commands for the headset, handsfree and a2dp service

8.1 Incomming unsolicited commands Lo

8.1.1

audioEvent - Audio status changed oL

9 Commands for the handsfree service

9.1 Call specific commandso

9.1.1

getSupportedMultiparty - Get available call hold and three way actions

9.1.2 doMultipartyAction - Perform a multiparty action
9.1.3 getCallStatus - Get status for all calls
sendDTMF - Send DTMF

9.2 Device functionallity commandso o

9.14

9.2.1

getAvailableEvents - Get available events oo

9.2.2 getEventValue - Get current value for anevent

9.2.3 getNetworkOperator - Get the name of the network operator

9.3 Incoming unsolicited commands Lo

9.3.1
9.3.2

event - New event e

callWaiting - New waiting incoming call

10 Commands for the dun service

10.1 Connection commands v v o e e e e e e e e e e e e e e e e

10.1.1 connect - Connect to adevice L

10.1.2 disconnect - Disconnect from a device

10.1.3 getStatus - Method name short description

11 Scenarios and usages

11.1 Parsing and creating a command oL

11.2 Find and automatically connect to a device

11.3 Reading phone book entries L Lo

11.4 Reading SMSes

11.5 Call handling for the handfree service
11.5.1 Placingacall e
11.5.2 Receivingacall
11.5.3 Multiparty calls. e

12 Troubleshooting

12.1 Problems and solutions e e e e e e e e e e e

12.1.1 How to update a bug in this manual?

12.1.2 Error mesSages« . v oo e e e e e e e e e e

13 Wordlist

12.1.2.1
12.1.2.2
12.1.2.3
12.1.24
12.1.2.5
12.1.2.6

Invalid argument device. The device cannot be found.
Another audio connection is active to the requested remote device.
An unknown or internal error occured./Unknown error.
Runtime errors L
No UDP data is received when using infoTainer.

Audio routing does not work.

il

41
41
41

42
42
42
42
43
43
44
44
44
44
45
45
45

46
46
46
46
46

47
47
47
48
48
49
49
49
49

51
o1
51
o1
51
ol
51
92
52
92

53

14 Appendix 54

14.1 Handsfree workaroundo 54
14.2 C# command parsing class 56
14.2.1 File btCommand.cs. e 56
14.3 C++ command parsing classo 58
14.3.1 File btCommand.h L 58
14.3.2 File btCommand.cpp« o o L 59
14.4 C++ audio streaming 61
14.4.1 File audio.h oL 61
14.4.2 File audio.Cpp . - « « « « o o o e 62
14.4.3 File main.cpp« o o e e e e 68

iv

List of Figures

2.1 System layout e

14.1 Spylite configuration

14.2 Handsfree service spylite sequence entries

List of Tables

1.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

Revision history e 7
Configuration variableso 12
UDP port mapping e 13
One or more arguments L. e 14
Zero arguments Lol 14
Command examples L e 14
Error command oL 15
SErvices e 16
Phonebook storages Lo 16
List entry types Lo 17
SMS storages« . i e e 17
SMS storage types« . o . o e e 18
SMS Statuses o v e e e e e 18
Encodings oL e 18
Battery status. oL 19
Multiparty actions L 19
Events e 20
Call statuses o 20
Waveln/waveOut variables Lo 21
Error codes 22
Sub-error codeso 23

vi

Chapter 1

Revision

Version

Date

Name

Comments

1.0

January 2008

Johan Bohlin

Initial document.

Table 1.1: Revision history

Chapter 2

Description

NDGate provides an API over UDP for easy access of functionalities available on a nomadic device like
a mobile phone. The nomadic device is connected wireless using Bluetooth to the gateway. Typical

scenario is an infotainment system in a car that wants to integrate with the drivers mobile phone.

Vehicle

Vehicle electronics

Host PC

le——LIDF Service 1———»
+——LIDP Sarvice Z2——»

————DP Service N———

Infatainment [—Ethernst—
Gateway
Application
e——IDP Audio 1 ———f

LIDP Audic »

l4——TCPUDP Intermet——m

T-Blueelc)oth- |
T-Bluslmth- —

Figure 2.1: System layout

Chapter 3

Installation

3.1 Requirements

The gateway has been tested on two different windows XP installations, so no other operative systems

are officially supported. This is what you need:
e Windows XP with Service pack 2

e A Bluetooth USB dongle that supports the Broadcom/Widcomm Bluetooth-stack. The gateway is
tested with the D-link DBT-122 Bluetooth-dongle.

3.2 Installation

3.2.1 Development environment
You need to install the following items:

1. Microsoft Windows Server 2003 R2 Platform SDK, http://www.microsoft.com/downloads/details.
aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB&displaylang=en

2. Microsoft Visual C++ 2005 Redistributable Package (x86), http://www.microsoft.com/downloads/
details.aspx?familyid=32bclbee-a3f9-4c13-9c99-220b62al191lee&displaylang=en

3. Microsoft Visual Studio C++ Express 2008, http://www.microsoft.com/express/download/

4. If you are going to use the test application infoTainer, you have to install Visual Studio C# express

2008 from the same url.

5. Broadcom Bluetooth SDK Version 6.1.0.1501, http://www.broadcom.com/products/bluetooth_
sdk.php

You also need to copy btwapi.dll from your ?WIDCOMM\BTW DK\SDK\Release” folder to your
"%SYSTEMROOT%\system32” directory.

To build NDGate, you need to configure your Visual C++ paths. Open Visual C++ Express 2008
and goto the menu Tools->Options->Projects and Solutions->VC++ Directories.

For ”Executable files” add search path to your ”Microsoft Platform SDK for Windows Server 2003
R2\Bin”.

For "Include files” add search path to your ”Microsoft Platform SDK for Windows Server 2003 R2\ Include”
and your "WIDCOMM\BTW DK\SDK\Inc”.

10 Installation

For ”Library files” add search path to your ”Microsoft Platform SDK for Windows Server 2003 R2\Lib”
and your "WIDCOMM\BTW DK\SDK)\Release”.

Note that you need to find the correct search path for your installation on your computer.

3.2.2 Bluetooth dongle

Install your Bluetooth dongle using the drives you got with your dongle. They need to be broad-
com/widcomm drivers. Important! You need to disable all other Bluetooth dongles! Only one dongle
can be enabled, and it must use the widcomm /broadcom drives.

3.2.3 Bluetooth environment

These steps has to be done in the Windows environment.

First we need to disable the local headset and auto gateway services.
1. Open "My Bluetooth places” in ”My Computer” or Go to ”control panel”.
2. Open "My device”.
3. Open "My services”.
4. Find "Headset”.
5. Right click on ”"Headset” and chose properties.
6. Uncheck "auto connect”.

7. Repeat step 4 to 6 for " Audio Gateway”.

3.2.4 Internet

There are a couple of steps needed for the internet service. First we need to enable the Bluetooth-modem.

This may not be necessary it the Bluetooth-modem is already installed.
1. First, you'll need a random mobile phone with Bluetooth DUN support.

2. Enable service discovery on the mobile phone, and search for the device in windows using "My
Bluetooth places”, usually located in "My Computer” -> "My Bluetooth places” -> ”Search for
Bluetooth devices”. When the device is found, double-click on it to search for services. Once all

services are found, right click on the ”dial-up networking” service chose ”connect...”
3. Pair the mobile phone if requested.

4. Once connected, the ”found new hardware” dialog or similar should pop-up. Go trough the modem
installation. Once the modem is installed, you should disconnect the Bluetooth connection to the

mobile phone.

5. Go to windows ”Control panel” -> ”Phone and Modem Options” -> "Modem” - tag and verify
that a Bluetooth modem is installed. Also note the COM-port number the modem is connected
to, you need this in the next step. If not, go to step 1 and retry again. You can also try another

mobile phone.

6. This is important! Set the bluetoothModemComPort setting in settings.ini (see section 3.3) to

the COM-port number you got from the previous step. Now we need to create a dial-up connection.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Inst

allation 11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24

Goto ”Control panel” and then ”Network connections”

Remove ALL Dial-up connections (not LAN or high-speed internet), if there are any.
Go trough the "New Connection Wizard”.

Choose ”connect to internet” and next.

”set up my connection manually” and next.

In the next step, chose ”Connect using dial-up modem”.

This is important! Type in exactly this name as ISP name: bluetooth

Leave phone number blank.

Create the connection for ” Anyone’s use”.

Leave the username and password blank.

)

Check "use this account name and...” and ”default connection”

When the ”Connect Bluetooth” dialog appears, close it.
Right click on the newly created connection, click on ”"Properties”.
On the "general” tab, make sure the ”Bluetooth-modem” is selected.

Goto the ”Options” tab. Uncheck ”Display progress while connecting, ” Promt for name and pass-

»”

word,...” and ”Prompt for phone number”.

This and the next step is only required if you need internet on another computer than where the
NDGate.exe is running. Goto the ”Advanced” tab. Check ” Allow other network users to connect
trough this computer’s internet connection”. If you receive a dialog saying ”The username and

password for..”, just click OK.

Select the network interface card in the in "Home networking connection”-dropdown that should
be allowed to use the internet, i.e. the network card connected to the same network where the

client/GUI application is connected to.

. Click OK to save the settings.

3.3 Application configuration

At start-up, NDGate.exe to read a settings file, settings.ini, from the same directory NDGate.exe is

started from. If the file does not exist, or the settings key is missing in the settings.ini-file, the default

value is used. Create a new file named settings.ini with the content below, and place the file n the same

directory as NDGate.exe:

[NDGate]
udpBase=9000
udpDestinationHost=127.0.0.1

blue

toothModem ComPort=/

logToFile=1
logToConsole=1

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

12 Installation
3.3.1 Variables

Variable Values | Default | Description

udpBase 1-65535 | 9000 The base UDP-port. See section
41

udpDestinationHost a string | 127.0.0.1 | The destination address where
UDP-packets are sent to from the
gateway.

bluetoothModemComPort | 1-30 3 The COM-port number the Blue-
tooth modem is connected to.
This setting must be set! See sec-
tion 3.2.4.

logToFile 0-1 0 Prints log messages to
NDGate.log in the NDGate.exe
directory. 0 to disable.

logToConsole 0-1 1 Prints log messages to console
window. 0 to disable.

handsfreeDevices devices Device addresses on the format
specified in section 4.3.1, sepa-
rated by comma (no space).

handsfreeScns Scns The handsfree SCN-port number

for each device in handsfreeDe-
vices. See appendiz 14.1 about

the handsfree workaround.

Table 3.1: Configuration variables

NDGate User’s Manual

Johan Bo6hlin - Volvo Technology

February 3, 2008

Chapter 4

Accessing the API

4.1 UDP-connections

The API is accessed by UDP connections. Each service has its own UDP-port-pair. The client should

establish an UDP-listener to each service that the client wants to use.

The base address is configured in the settings.ini file. See section 3.3

Service Out to gateway | In from gateway
finder Base+1 Base+0
serial Base+3 Base+2
headset Base+5 Base+4
obexftp Base+7 Base+6
syncml Base+9 Base+8
avrep Base+11 Base+10
a2dp Base+13 Base+12
dun Base+15 Base+14
handsfree Base+17 Base+16
Headset-audio Base+101 Base+100
Handsfree-audio | Base+103 Base+102
A2DP-audio Base+105 Base+104

Table 4.1: UDP port mapping

The client should send commands/data on the ”Out to gateway”-port, and receive responses/data on
the "In from gateway”-port.
A service can only be connected to one device. It possible to multiple devices connected to the gateway,

using different services.

4.2 A command

A command has three parts: A function name, zero or more arguments and a terminator.
The command is formatted as one of the two follow ways:

13

14

Accessing the API

For one or more arguments:

Function name | <space> | One or more arguments | terminator

Table 4.2: One or more arguments

For zero arguments:

Function name | terminator

Table 4.3: Zero arguments

The function name is the name of the function. Valid characters for a function name are the letters

a-z, A-Z and 1-9. Space, tab, new line etc. are invalid characters in a function name.

If there are no arguments, the terminator is followed immediately after the function name.

The terminator consists of the carrier return- followed by the new line character, which is written \r\n,

which corresponds to the ASCII values 13 and 10 respectively.

If there is at least one argument, a space separates the function name and the arguments. The first

character after the space is part of the first (or only) argument. Each argument is separated with the

character sequence {:}, that is a left frizz-parenthesis, a colon and finally a right frizz-parenthesis. An

argument can be zero or more characters. The last argument is ended with the terminator. An argument

cannot contain the {:} sequence.

Command examples:

functionName argument1{: }argument2{: }argument3\r\n

A command with three arguments.

functionName argument1\r\n

A command with one argument.

functionName argument1{:}{:}argument3\r\n

A command with three arguments, where ar-

gument?2 is empty.

functionName\r\n

A command with no argument.

functionName \r\n

A command with one empty argument.

functionName {:}\r\n

A command with two empty arguments.

functionName {:}{:}\r\n

A command with three empty arguments.

<space>functionName\r\n

An INVALID command.

\r\n

An INVALID command.

Table 4.4: Command examples

Command responses

All command sent are responded with the same command structure, and with zero or more arguments.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Accessing the API 15

The function name for a response command has the string Return appended to the function name. Ex-
ample: If the command functionName argumentI\r\n are sent, a possible return argument could be

functionNameReturn\r\n or functionNameReturn argument1\r\n.

Error responses Responses as described above are only sent in case of no error. If an error occurs

during a command, an error response is sent instead. The error command are formatted as in table 4.5.

’ error ‘ terminator | <space> ‘ errValue{:}subErrValue{: }errStr ‘ terminator

Table 4.5: Error command

Where the function name is error, and argument 1 is an string and one of the values in the error
listing, see section 4.3.15, argument 2 is an string and one of the values in the Sub-Error listing, see
section 4.3.16, and errStr is a human readable string of the error occurred, useful for debugging. An
example of an error response:

error errlnvalid Arguments{:} subErrInvalidNumber{:} The number is invalid.\r\n

Lists

An argument could be a list. A list separate its elements using the | character (ASCII = 124).
Example lists:

functionNameReturn elementl|element2| element3|| element5:argument2\r\n

Where the list is element!|element2|element3||element5 with five elements, where element 4 is empty.

4.3 General structures and need to know

4.3.1 Device address

A device address is a string hexadecimal representation of a device. The address if separated in six bytes
using a colon as separator. The format is as follows: byteb:byted:byte3:byte2:bytel:byte0
An example of an address: 15:23:07:00:fd:56

The device address is used in newDevice, getServices, bond, undbond, connect and disconnect.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

16

Accessing the API

4.3.2 Services

Available services are:

Service Description Implemented

serial Basic connection for sending SMS, reading | Yes
phone book.

headset Same as handsfree, but limited functions. Yes

handsfree | Placing calls, route audio from device to gate- | Yes
way, etc.

avrcep For controlling the media player. No

obexftp File transfer. No

syncml Synchronizing phone book and calendar | No
events.

a2dp Support streaming of high quality audio, like | No
music.

dun Dial-up internet. Used for internet connec- | Yes
tion.

Table 4.6: Services

Services are used in getServices and getSupportedServices.

4.3.3 Phone book storages

A phone book storage are a storage to read contacts from. Available phone book storages are listed in

table 4.7.
Storage Description
simFixDialingPhonebook The number stored at the keypad buttons 0-9, usually called speed
dialing.
simRecentCalls Use this one to get the recent calls made by on the device. If this
list is empty, try memoryRecentCalls.
memoryPhonebook Standard phone book stored in mobile memory. If this list is

empty, try simPhonebook.

simAndMemoryPhonebook

Combined phone book. Get all contacts from sim card and device

memory.

simPhonebook Standard phone book stored in mobile memory. If this list is
empty, try memoryPhonebook.

memoryRecentCalls Use this one to get the recent calls made by on the device. If this

list is empty, try simRecentCalls.

simOrMemoryEmergencyNumber

Holds emergency numbers.

memoryUnansweredCalls

All unanswered/missed calls.

simOrMemoryOwnNumbers

The device mobile phone number.

memoryReceivedCalls

Received/answered calls.

Table 4.7: Phonebook storages

NDGate User’s Manual

Johan Bo6hlin - Volvo Technology February 3, 2008

Accessing the API 17

Phonebook storages are used in getLists, getListParams and getList.

4.3.4 List/storage entry type

A list entry/storage entry type is used to indicate what kind of number the number associated with the
entry is. Available list entry type is listed in table 4.8.

Type Description

unknown | The type is unknown or unavailable.
work The number is a work phone number.
cell The number is a cell phone number.
home The number is a home phone number.
fax The number is a fax phone number.
pref Unknown, probably preferences.

pager The number is a pager phone number.
msg Unknown, probably a message.

other The number is an other phone number.

Table 4.8: List entry types

4.3.5 Phone number

A phone number for placing a call or sending a SMS must be formatted using the international format.
Numbers received from the gateway when reading from a phone book storage or when there is a new
incoming call notification can be formatted either using the national or international format. In that
case, it’s up to the client to determine the number format. An example of an international number is:
+46701234567

4.3.6 SMS storages

A SMS storage is the kind of memory to use to read from or write to. It is used in conjunction with the
SMS storage type to set or get the memory to use for a certain storage type. Valid SMS storages are
listed in table 4.9.

Storage | Description

device Use device memory as memory source/destination.

sim Use sim card as memory as memory source/destination.

Table 4.9: SMS storages

SMS storages are used in getSMSStorages, getSMSList and readSMS.

4.3.7 SMS storage types

A SMS storage type is used in conjunction with a SMS storage. The device has different memory settings

for different types of actions. Valid SMS storages types are listed in table 4.10.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

18 Accessing the API

Storage type | Description

readDelete Storage for reading and deleting SMS.
writeSend Storage for writing and sending SMS.
receive Storages where to receive SMS.

Table 4.10: SMS storage types

SMS storages are used in getSMSStorages and setSMSStorages.

4.3.8 SMS satus

A SMS status is a status of a SMS. Valid SMS statuses are listed in table 4.11.

Status Description Implemented
unread Messages that are unread. Yes
received Messages that are received. This NOT include | Yes

unread messages.

storedUnsent | Messages in outbox-folder, waiting to be sent. | No

storedSent Messages in sent-folder. No
all All messages in all folders. No
template Template messages in the template folder. No

Table 4.11: SMS statuses

SMS statuses are used in getSMSList and readSMS.

4.3.9 Encoding

Available encodings are are listed in figure 4.12.

Encoding | Priority
ISO-8859-1 | First
UTF-8 Second
GSM Third

Table 4.12: Encodings

The encoding applies to all data like contact names, SMS-messages, and so on RECEIVED from
the gateway. After a successful serial, headset or handsfree connection, the client must make a call to
getEncoding to determine the encoding in use, and then decode all SMS-text-body, contact names, etc.
using that encoding. Data sent TO the gateway, like SMS-text-body, must be sent using the Western
European (windows), Windows-1252 encoding. Note that the encoding cannot be set. The encoding is

chosen in the priority order and to what encoding the device supports.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Accessing the API 19

4.3.10 Battery status

Battery statuses is listed in table 4.13.

Status Description

byBattery | The device is powered using battery.

hasBattery | The device has a battery, but is powered using another power

source.

noBattery | The device does not have a battery.

powerFault | The device has very little power left, or another type of power

€error.

Table 4.13: Battery status

Battery status is used in getBatteryStatus.

4.3.11 Multiparty actions

Multiparty actions are used to handle three way dialing and conference calls, see table 4.14.

Action Description
releaseAllHeldSetBusyWaiting | Releases all held calls or sets User Determined User Busy (UDUB)

for a waiting call.

releaseAllActiveAcceptOther | Releases all active calls and accepts the other (waiting or held)

call.

releaseActiveX Releases the specific active call X.

holdAllAcceptOther Places all active calls on hold and accepts the other (held or wait-
ing) call.

holdAllExceptX Places all active calls, except call X, on hold.

addHeld Adds a held call to the conversation.

pairAndDisconnect Connects two calls and disconnects the subscriber from both calls.

Table 4.14: Multiparty actions

”X?” is the numbering (starting with 1) of the call given by the sequence of setting up or receiving the
calls (active, held or waiting) as seen by the served subscriber. Calls hold their number until they are
released. New calls take the lowest available number. Where both a held and a waiting call exists, the
above procedures applies to the waiting call (that is, not to the held call) in conflicting situation.

Multiparty actions are used in getSupported Multiparty and doMultipartyAction.

4.3.12 Events

An event is an incoming notification sent in the handsfree profile to indicate status changes. You shall
use events to determine when calls are connected, held, etc. Not all devices have all events implemented.
See table 4.15.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

20

Accessing the API

Name Description

battchg Battery charge level (0-5)

signal Signal quality (0-5)

batterywarning Battery warning (0-1)

chargerconnected Charger connected (0-1)

service Service availability (0-1) (Net contact status, 1 = Net contact)
sounder Sounder activity (0-1) (Phone silent status, 1 = phone silent)
message Message received (0-1)

call Call in progress (0-1)

roam Roaming indicator (0-1) (Home net status, 0 = Home Net)
smsfull 1: a short message memory storage in the MT has become full.

0: Memory locations are available

callsetup/call_setup

Bluetooth proprietary call set up status indicator. Possible values
are as follows: 0: Not currently in call set up 1: Incoming call
process ongoing 2: Outgoing call set up is ongoing 3: Remote

party being alerted in an outgoing call

callheld Indicator that indicates the status of any held calls on the AG. 0
= No held calls. 1 = Call on hold. If supported by ME.
VOX transmit activated by voice activity (0-1)

Table 4.15: Events

Events is used in event, getAvailableEvents and getEventValue.

4.3.13 Call status

Call status indicates the current status of all calls connected to the device. See table 4.16.

Status Description

active The call is active and ongoing.

held The call is held.

dialing The call is in the dialing state, not yet active.

alerting The call is alerting the receiver about the call, i.e. playing the

ring signal

. incoming | The call is a new incoming call.

waiting The call is incoming waiting call.

Table 4.16: Call statuses

Call status are used in getCallStatus.

4.3.14 Audio for headset and handsfree

IMPORTANT! In some mobile phones, the gateway Bluetooth device needs to be added to the audio

enabled Bluetooth device list, otherwise no audio will be routed from the device to the gateway. This is

common in Sony-Ericsson devices.

There are two ways to use audio.

NDGate User’s Manual

Johan Bo6hlin - Volvo Technology February 3, 2008

Accessing the API 21

4.3.14.1 Using Waveln and WaveOut

Audio is sent and received on the UDP-port pair associated with the service. The audio data is read
and written using Windows audio API, waveln and waveOut, and the client should use the same API.
An UDP-packet contains the raw audio data recored by waveln, found in the WAVEHDR->IpData. See
appendix 4.3.14 at page 20 for an example class in C++.

WAVEFORMATEX variable | Value Description

wFormatTag WAVE_FORMAT _PCM

nChannels 1

nSamplesPerSec 8000

nAvgBytesPerSec 16000

nBlockAlign 1

wBitsPerSample 16

cbSize 2

Non waveformatex variables | Value Description

Block size 500 Size of each block sent on UDP.

Table 4.17: Waveln/waveOut variables

4.3.14.2 Using bt AudioClient.exe

btAudioClient.exe is an implementation of the source code found in appendix 4.3.14 at page 20. To use
the application, launch it with the UDP audio in and UDP audio out data as the arguments. Example:
btAudioClient.exe 9103 9102

This example reads audio on port 9103, and sends audio on port 9102. Note that the application uses

the audio device set as the default audio device in windows.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

22

Accessing the API

4.3.15 FError codes

Error codes:

Error Description

errNoError No error has occurred.
errNotConnected Not connected to a device.
errAlredyConnected Already connected to a device.

errUnableToConnected

Unable to connect to a device.

errCommandInProgress

A command is already in progress.

errCommandFailed

The command failed. Check for sub errors.

errWrongNumberOfArguments

Wrong number of arguments.

errInvalid Arguments

One or more argument is malformed.

errCommandMalformed

The command is malformed.

errCommandAborted Returned when a command is aborted.

errPortAlredyOpen A connection or port is already open. Disconnect first.

errPortNotOpen A port is not open.

errUnknown Unknown error.

errNoCommandToAbort Returned when trying to abort a command when there is no com-
mand running.

errAlredyBonded The device is already bonded.

errNotBonded Not bounded to the device.

errNoServices No services, search for services for the device first.

errDeviceSearchInProgress

A device search is alredy in progress. Stop it first.

errNotSupported

Command is not supported.

Table 4.18: Error codes

NDGate User’s Manual

Johan Bo6hlin - Volvo Technology February 3, 2008

Accessing the API 23

4.3.16 Sub-error codes

Sub-error codes:

Sub-error Description

subErrNoSubError No sub-error.

subErrDeviceCannotBeFound | The device cannot be found. Search for services for the device

first.
subErrServiceUnavailable Search for services for the device first.
subErrTimeout The command timed-out.
subErrUnknown Unknown error.
subErrLineError Rfcomm Line error. Disconnect and reconnect.
subErrPeerFailed The device disconnected.
subErrNot Written The connection has failed, not all bytes of the command written.

subErrDeviceCommandError | The command is unsupported on the device.

subErrListDoesNotExists The selected list does not exists.
subErrIndexIsOutOfRange Index is out of range.

subErrBadPin The pin is not valid.

subErrInvalidNumber The phone number is not valid.
subErrMayStillPaired Unbonding may have failed.
subErrConnectedOtherDevice | The service is connected to another device.
subErrNothingTodo Nothing to do.

Table 4.19: Sub-error codes

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Chapter 5

Finder commands- Device/Service

search and bond/unbond

5.1 Device finding/handling commands

5.1.1 startDeviceSearch - Start searching for available devices

Starts a search for all devices nearby. When a new device is found, they are returned by the newDevice
command. A device search stops when the stopDeviceSearch command are issued or when the search is

done. Use command getDeviceSearchStatus to get current search status.

Syntax:
startDeviceSearch

Response:

startDeviceSearchReturn

Example:
Out: startDeviceSearch

Response: startDeviceSearchReturn

5.1.2 stopDeviceSearch - Stop searching for available devices

Stop searching for new devices.

Syntax:

stopDeviceSearch

Response:

stopDeviceSearchReturn
Example:

Out: stopDeviceSearch

Response: stopDeviceSearchReturn

24

Finder commands- Device/Service search and bond/unbond 25

5.1.3 getDeviceSearchStatus - Get status for device search

Get status for device search.

Syntax:

getDeviceSearchStatus

Response:

getDeviceSearchStatusReturn searching

Return arguments:

searching: Is 1 if searcing in progress, 0 otherwise.
Example:

Out: getDeviceSearchStatus

Response: getDeviceSearchStatusReturn 1

A device search is in progress.

5.1.4 getServices - Get services for a device

Get all available services for a device. Returns a list of all available services for a device. If there
is no services available on the device, or if the device is not in range, an empty list is returned. Note

that a name is not always returned using this function. Use startDeviceSearch to receive the device name.

Syntazx:
getServices devAddr

Command arguments:

devAddr: A address to a device to search for services for.

Response:

getServicesReturn list One device/service list.

Return arguments:
list: A list of variable length. The first three elements are the same as in newDevice, see getDevices.
Each next element in the list is a service name (see section 4.3.2). There could be zero or more additional

elements (services).

Example:

Out: getServices 0:19:b7:7d:2:32

Response: getServicesReturn 00:19:b7:7d:02:32|Johboh-mobil|1|avrep|headset|serial|syncml

This example requests for all services for the device 00:19:b7:7d:02:32, and get back a list of services

which in this case is avrcp, headset, serial and syncml.

5.1.5 bond - Bond a device

Bond, or pair, the gateway with a device using a pin. The device (or the user of the device) must confirm

with the same pin as the argument passed with the command.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

26 Finder commands- Device/Service search and bond/unbond

Syntaz: bond devAddr{:}pin

Command arguments:
devAddr: The address (see section 4.3.1) of the device to bond with.

pin: A alphanumeric string between one and 16 characters to use as authentication pin to pair the device.

Response:
bondReturn

Example:

Out: bond 00:19:b7:7d:02:32{:}123456

Response: bondReturn

This example tries to bond with the device 00:19:b7:7d:02:32 using pin 123456. The bondReturn indicates

no error and a successful bond.

5.1.6 wunbond - Unbond a device

Unbound, or unpair, a device from a gateway.

Syntax:
unbond devAddr

Command arguments:
devAddr: The address of the device to unbond.

Response:

unbondReturn

Example:
Out: unbond 00:19:b7:7d:02:32

Response: bondReturn

5.1.7 ping - Ping the gateway

Check if the gateway is alive and responding. If there is no response at all from the gateway within 10

seconds, the gateway can be considered dead.

Syntax:
ping

Response:

pingReturn

Example:

Out: ping

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Finder commands- Device/Service search and bond/unbond 27

Response: pingReturn

5.1.8 getSupportedServices - Get the supported gateway services

Get the services that are implemented in the gateway.

Syntax:
getSupportedServices

Response:

getSupportedServicesReturn list A list with zero or more elements.

Return arguments:

list: A list of supported services.

Example:
Out: getSupportedServices
Response: getSupportedServicesReturn serial|headset

This gateway supports the serial and headset profile.

5.2 Incomming unsolicited commands

5.2.1 mnewDevice - New device found during device search

Sent from the gateway when a new device is found during a device search. Return information of a found
device as an argument, where an argument contains the name and address of the device, and if the device
is bonded or not. This command does not return any services for the device. See getServices for service

discovery.

Syntax:

newDevice device One device.

Command arguments:
device: A list with three elements. First element is the device address (see section 4.3.1), second argu-
ment is a human readable device name if the name are available, and the third element is 1 if the device

is bounded, and 0 otherwise.

Ezxzample:
Response: newDevice 00:01:0a:6b:79:43:6d|VTECW464|0
A device with name VITECW464 that is unbonded.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Chapter 6

General commands for the serial,
headset, handsfree, avrcp, obexf{tp,

syncml, avrcp and a2dp service

6.1 Connection commands

6.1.1 connect - Connect to a device

Connect to a device using the service that is associated with the UDP-connection the command is sent
on. The service needs to be available on the device, otherwise an error is returned. The gateway also
needs to know about all available services for the device, therefore the client need to search for available
services using getServices if this has not been done earlier during the lifespan of the gateway. If there is
any error during connection, try to disconnect first, then connect again. If this connection is to serial,
headset or handsfree service, use the getEncoding function to get the current encoding after a successful

connection. Use getStatus to verify that the connection is successful.

Syntax:
connect devAddr

Command arguments:
devAddr: The address of the device to connect to.

Response:

connectReturn

Example:

Out: connect 00:19:b7:7d:02:32
Response: connectReturn

Connects to the device 00:19:b7:7d:02:32.

28

General commands for the serial, headset, handsfree, avrcp, obexftp, syncml, avrep and a2dp service 29

6.1.2 disconnect - Disconnect from a device

Disconnect a device using the service that is associated with the UDP-connection the command is sent on.

Syntax:

disconnect

Response:

disconnectReturn

Example:
Out: disconnect

Response: disconnectReturn

6.1.3 getStatus - Method name short description

Get the current connection status for the service that is associated with the UDP-connection the com-

mand is sent on.

Syntax:
getStatus

Response:

getStatusReturn status[{:}devAddr| A status en an optional device address.

Return arguments:
status: The current status. When status is connected, the gateway is connected to the service on a de-

vice with device address devAddr When status is disconnected, the service is not connected to any device.

Example:
Out: getStatus
Response: getStatusReturn connected{:}00:19:b7:7d:02:32

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Chapter 7

Commands for serial, handsfree and

headset service

7.1 Phone book specific commands

7.1.1 getLists - Get available phone book storages

Get all available phone book storages. This includes unanswered calls, recent calls list. See section 4.3.3

for list explanations.

Syntax:
getLists

Response:

getLists [storagel[{:}storage2[{:}...]]] Zero or more storages.

Return arguments:

storageX: A phone book storage.

Example:
Out: getLists

Response: getListsReturn memoryPhonebook{:}memoryRecentCalls{: }memoryUnansweredCalls

7.1.2 getListParams - Get parameters for a phone book storage

After getting all available phone book storages, and before fetching elements from a storage, a call to this
function helps determine between which indexes there are valid entries. This function returns the start
index and end index of where there are entries, as well as the maximum length of the name and number

for a entry.

Syntax:
getListParams storage

Command arguments:

storage: One of the storages received when calling getLists.

30

Commands for serial, handsfree and headset service 31

Response:
getListParamsReturn list{:}startIndex{: }endIndex{: }maxNameLength{:}maxNumberLength

Return arguments:

list: The name of the list that parameters where requested for. startIndex: An integer. The list starts
on this index.

endIndex: An integer. The list ends at this index.

maxNameLength: An integer. The max length for an entry name.

maxNumberLength: An integer. The max length for an entry number.

Example:

Out: getListsParams memoryRecentCalls

Response: getListParamsReturn memoryRecentCalls {:}1{:}20{:}50{:}50

This example requests for list parameters for the storage memoryRecentCalls. Valid indexes are between
1 and 20.

7.1.3 getList - Get all entries in a list/ from a storage

Get all entries between two indexes from a storage. A call to getLists and getListParams should precede
this command. The name field is encoded using the encoding received from getEncoding. Note that not
all indexes have entries, so if for example the start index is 1 and end index 500, not 500 entries will be

returned unless all entries are non-empty.

Syntazx:
getList storage{:}startIndex{:}endIndex

Command arguments:

storage: One of the storages received when calling getLists.

startIndex: A start index to start fetch from. Should be in range of the indexes received from getList-
Params.

endIndex: The end index to stop fetching on. Should be in range of the indexes received from getList-

Params.

Response:

getListReturn [entryl[{:}entry2...]] Zero or more entries.

Return arguments:

entryX: An entry is a list with four or five elements. The first element is the entry index, the second
element is the type of the entry (see section 4.3.4), the third is the name and the fourth is the number. If
there is a date associated with the entry (available on some devices when reading from e.g. the memoryU-
nansweredCalls storage), the list contains a fifth element with the date. The date format is not known,
and should be parsed using a generic string to date parser. The usual format could be ”yyyy/dd/mm
hh:ii:ss” or ”yyyy-mm-dd hh:ii:ss”.

Example:

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

32 Commands for serial, handsfree and headset service

Out: getList memoryPhonebook {:}1{:}2
Response: getListReturn 1|work|Joe|01234567{:}2|home|John|+4274244212

This example get the first two entries in the memory phone book list.

7.2 Device functionality commands

7.2.1 getEncoding - Get the current encoding for received data

This function should be called after a successful connection to determine the encoding in use for data

fields for received data like SMS-body-text, contact names etc.

Syntax:
getEncoding

Response:

getEncodingReturn encoding One encoding.

Return arguments:

encoding: The encoding in use. (see section 4.5.9).

Example:
Out: getEncoding
Response: getEncodingReturn ISO-8559-1

7.2.2 getBatteryStatus - Get battery level and status

Receives how the device is powered, and how much power there are left in the battery, if a battery is

connected.

Syntax:
getBatteryStatus

Response:

getBatteryStatusReturn status{:}level

Return arguments:
status: The battery status (see section 4.3.10).
level: If 0, the battery is exhausted or no battery connected. If between 1 and 100, the level represent

the percentage of capacity remaining.

Example:

Out: getBatteryStatus

Response: getBatteryReturn byBattery{:}78

The battery status indicates a capacity of 78% and that the device is powered by battery.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Commands for serial, handsfree and headset service 33

7.2.3 getSignalQuality - Get the signal quality

Receives the how strong the signal level is of the GSM or UMTS-network.

Syntax:
getSignalQuality

Response:

getSignalQualityReturn quality

Return arguments:
quality: The signal quality between 0-31 where 0 = -113 dBm or less, 1 = -111 dBm, 2..30 = -109... -53
dBm, 31 = -51 dBm or more.

Example:
Out: getSignalQuality
Response: getSignalQualityReturn 21

7.2.4 getValidRingVolume - Get valid ring volume interval

This function should be called before setRingVolume to know which value that is valid to use as an

argument to setRingVolume.

Syntax:
getValidRingVolume

Response:

getValidRingVolumeReturn minValue{:}maxValue

Return arguments:
minValue: The minimum value.

maxValue: The maximum value.

Example:
Out: getValidRingVolume
Response: getValidRingVolumeReturn 0{:}8

The volume can be set to a value between 0 and 8.

7.2.5 setRingVolume - Set the ring volume

Set the ring volume to a value between the allowed one received by calling getValidRingVolume. The

ring volume is the volume of the signal that is played on the device when there is a new incoming call.

Syntax:

setRingVolume volume

Command arguments:

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

34 Commands for serial, handsfree and headset service

volume: A value between the min and max received from getValidRingVolume to set the ring volume to.

Response:

setRingVolumeReturn

Example:
Out: setRingVolume 6
Response: setRingVolumeReturn

Sets the ring volume to 6.

7.2.6 getRingVolume - Get the current ring volume
Get the current ring volume.

Syntax:
getRingVolume

Response:

getRingVolume volume

Return arguments:

volume: The current ring value.

Example:
Out: getRingVolume
Response: getRingVolumeReturn 6

The ring volume is set to 6.

7.2.7 setSilence - Set silence mode

Set the phone in soundless mode or not. When set, the phone does not play the ring signal when there

is a new incoming call. Depending on the device, no SMS signal will be played either.

Syntax:
setSilence enable

Command arguments:

enable: 1 to enable silence mode, 0 to disable it.

Response:

seSilenceReturn

Example:
Out: setSilence 1

Response: setSilenceReturn

NDGate User’s Manual Johan Bo6hlin - Volvo Technology

February 3, 2008

Commands for serial, handsfree and headset service 35

Enable soundless mode.

7.2.8 getSilence - Get silence mode status
Get the status of the silence mode.

Syntax:

getSilence

Response:

getSilenceReturn enabled

Return arguments:

enabled: 1 when the soundless mode is enabled, 0 otherwise.

Example:
Out: getSilence
Response: getSilenceReturn 0

The silence mode is disabled.

7.2.9 setKeypressNotification - Enable or disable key press notification

Enable or disable incoming key press notification when the user press a key on the device.

Syntax:

setKeypressNotification enable

Command arguments:

enable: 1 to enable key press notification, 0 otherwise.

Response:

setKeypressNotificationReturn

Example:
Out: setKeypressNotification 1

Response: setKeypressNotificationReturn

7.3 Call specific commands

7.3.1 dial - Dial a number

Place a call to a number. The number must on the international format. Note that when using the

handsfree service, you can make multiparty calls using dial together with doMultipartyAction.

Syntax:

dial number

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

36 Commands for serial, handsfree and headset service

Command arguments:

number: The number to dial.

Response:
dialReturn

Example:
Out: dial 4701234567

Response: dialReturn

7.3.2 answer - Answer an incoming call
Answer an incoming call.

Syntax:

answer

Response:

answerReturn

Example:
Out: answer

Response: answerReturn

7.3.3 hangup - Hangup an ongoing or incoming call

Hangup an ongoing or reject an incoming call.

Syntax:
hangup

Response:

hangupReturn

Example:
Out: hangup

Response: hangupReturn

7.4 SMS specific commands

7.4.1 sendSMS - Create and send a new SMS

Send a new SMS to a receiver. The text must be encoded using Windows-1252 (standard windows en-

coding) and the number must be in the international format.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Commands for serial, handsfree and headset service 37

Syntax:
sendSMS number{:}text

Command arguments:
number: The receivers number on the international format.
text: The content of the SMS encoded in Windows-1252.

Response:
sendSMSReturn

Example:
Out: sendSMS +46701234567{: }Hello World!
Response: sendSMSReturn

7.4.2 getSMSStorages - Get SMS storages for a storage type

Get available SMS storages for a SMS storage type. Use this function to know valid storages to read
SMS from. This function should be called before reading SMSes.

Syntax:
getSMSStorages type

Command arguments:

type: The SMS storage type to get storages for (see section 4.3.7).

Response:

getSMSStoragesReturn type{:}list Zero or more elements with SMS storages.

Return arguments:
type: The SMS storage type storages where requested for.
list: A list of available SMS storages.

Example:
Out: getSMSStorages readDelete
Response: getSMSStoragesReturn readDelete{: }device|sim

Available SMS storages for reading and deleting SMSes are device and sim memory.

7.4.3 setSMSStorage - Set the storage for a SMS storage type

This function is called inside readSMS and getSMSList to set the correct storage when reading an SMS.
Use this function to set another memory for receiving SMS, if the device support it. Use getSMSStorages

to check available storages.

Syntax:
setSMSStorage type{:}storage

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

38 Commands for serial, handsfree and headset service

Command arguments:
type: The SMS storage type to set SMS storage for.
storage: The SMS storage to set.

Response:
setSMSStorageReturn

Example:

Out: setSMSStorage receive{:}device

Response: setSMSStorageReturn

Set to use the device memory for storing received SMS.

7.4.4 readSMS - Read a SMS from a storage

Read a SMS from the readDelete storage type using the memory specified as an argument. The text field

is encoded using the encoding received from getEncoding.

Syntax:
readSMS storage{:}index

Command arguments:
storage: The SMS storage to read from.
index: The index that specifies which SMS to read.

Response:
readSMSReturn sms A SMS as a list.

Return arguments:

sms: A SMS represented as a list. The first element is the SMS index. The second element is the SMS
status. The third element is the sender number in national or international format. The fourth element
is the received date on the format "yyyy-mm-dd HH:ii:ss”. The fifth element is the SMS-body-text,

encoded with the encoding received from getEncoding.

Example:
Out: readSMS device{:}123456
Response: readSMS 123456|received|446701234567|2007-12-24 12:00:00|Hello

7.4.5 getSMSList - Get all SMSes in a storage

Receives all SMSes in a storage with a specific SMS status. Note that when reading an SMS with status

unread, the status will change to received.

Syntax:
getSMSList storage{:}status

Command arguments:

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Commands for serial, handsfree and headset service 39

storage: The storage to read from.
status: The function only returns SMSes with this SMS status.

Response:
getSMSListReturn [sms1[{:}sms2[{:}...]]] Zero or more SMSes.

Return arguments:

sms: A SMS represented as a list, same as in readSMS.

Example:
Out: getSMSList sim:unread
Response: 1|unread|+46112|2007-12-24 12:00:00|Hi!{:}2|unread|+46115|2007-12-25 12:00:00|Hello!

Fetch all SMSes from the sim card with status unread.

7.4.6 setSMSNotification - Enable or disable SMS notification

Enable or disable incoming SMS notification when receiving a new SMS. By default SMS notification is

activated when using the handsfree service, but not when connecting to headset or serial.

Syntax:
setSMSNotification enable

Command arguments:

enable: 1 to enable SMS notification, 0 otherwise.

Response:
setSMSNotificationReturn

Example:
Out: setSMSNotification 1
Response: setSMSNotificationReturn

7.5 Incomming unsolicited commands

7.5.1 newSMS - New SMS received

When the device has received a new SMS, this command is sent containing the SMS storage the SMS
has been stored in, and on which index. Use readSMS to read the received SMS.

Syntax:
newSMS storage{:}index

Command arguments:
storage: The storage where the SMS is stored.
index: The index where the SMS is stored.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

40 Commands for serial, handsfree and headset service

Example:
Response: newSMS device{:}42672

7.5.2 ring - New incoming call

Sent periodically about every 3 seconds when there is an incoming call.

Syntax:

ring
Example:

Response: ring

7.5.3 number - Incoming number

On a new incoming call, this command reports the callers’ number.

Syntax:

number nr

Command arguments:

nr: The callers number in national or international format.

Example:
Response: number +46702319191

7.5.4 keypress - A key has been pressed

This command is sent by the gateway when the user press a key on the device and key press notification

is enabled.

Syntax:
keypress key{:}press

Command arguments:
key: The key that have been pressed or released.

press: 1 if the key has been pressed, or 0 if it was released.

Example:
Response: keypress 5{:}0

The key ”5” was released.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology

February 3, 2008

Chapter 8

Commands for the headset,

handsfree and a2dp service

8.1 Incomming unsolicited commands

8.1.1 audioEvent - Audio status changed

This event is sent from the gateway when audio is connected or disconnected. When connected, audio is

sent and read on the respective audio UDP-connection pair for the current service.

Syntax:

audioEvent status

Command arguments:

status: connected when there exists an audio connection, and disconnected otherwise.

Ezxzample: Response: audioEvent connected

41

Chapter 9

Commands for the handsfree service

9.1 Call specific commands

9.1.1 getSupportedMultiparty - Get available call hold and three way actions

This command returns all supported three way calling/multiparty actions that the connected device sup-

ports. Note that the network provider may not support all available actions.

Syntax:
getSupportedMultiparty

Response:

getSupportedMultipartyReturn [actionl[{:}action2[{:}...]]] Zero or more actions.

Return arguments:

actionX: A supported action (see section 4.3.11).

Example:

Out: getSupportedMultiparty

Response: getSupportedMultipartyReturn addHeld{:}releaseActiveX

The device support two multiparty actions, the ” Add a held call to the conversation.” and ”Releases the

specific active call X.”

9.1.2 doMultipartyAction - Perform a multiparty action

Use getSupportedMultiparty to get all available multiparty actions, and use this command to perform

one of them. See section 4.3.11.

Syntax:
doMultiparty Action action[{:}X]

Command arguments:

action: One of the actions from getSupportedMultiparty.

X: A call index. Needed for some of the multiparty actions.

42

Commands for the handsfree service 43

Response:
doMultipartyActionReturn

Example:
Out: doMultipartyAction releaseActiveX{:}2
Response: doMultiparty ActionReturn

Releases the active call number 2.

9.1.3 getCallStatus - Get status for all calls

Returns status for all active, held, incoming and waiting calls. Use this function to determine call index

used in doMultipartyAction. If there are no calls, this function may fail on the device.

Syntax:
getCallStatus

Response:
getCallStatusReturn [calll[{:}call2[{:}...]]] Zero or more calls.

Return arguments:

callX: A call is a list with five elements. The first element is the call index used in doMutlipartyAction.
The second element is 1 when the call is oriented into the device, and 0 when the call was made from the
device. Element three is the status of the call (see section 4.3.13). The fourth element is 1 if this call is in a

multiparty conference and 0 if it is not. The fifth and last element is the phone number this call is to/from.

Example:

Out: getCallStatus

Response: getCallStatusReturn 1|1|active|0]0701234567

Indicates that there is currently one active call from the number 0701234567 to the device.

9.1.4 sendDTMF - Send DTMF
Send DTMF tones during an ongoing call. Valid characters are 01234567890*# ABCD.

Syntax:
sendDTMF dtmf

Command arguments:
dtmf: A string of DTMF tones to send.

Response:
sendDTMFReturn

Example:
Out: sendDTMF *111#
Response: sendDTMFReturn

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

44 Commands for the handsfree service

9.2 Device functionallity commands

9.2.1 getAvailableEvents - Get available events
Get the supported events by this device. See section 4.3.12.

Syntax:
get AvailableEvents

Response:

getAvailableEvents [event1[{:}event2[{:}...]]] Zero or more events.

Return arguments:

eventX: A event name.

Example:
Out: getAvailableEvents
Response: getAvailableEvents battchg{:}call{:}callsetup{:}sounder

This device support battery charger level, call, call setup and sounder events.

9.2.2 getEventValue - Get current value for an event
Get the value for one of the events received from getAvailableEvents.

Syntax:

getEventValue name

Command arguments:

name: The event name to get the value of.

Response:

getEventValueReturn name{:}value

Return arguments:
name: The event name.

value: The current value for the event.

Example:
Out: getEventValue call
Response: getEventValueReturn call{:}0

Indicates that the device is currently not in a call.

9.2.3 getNetworkOperator - Get the name of the network operator

Returns the network operators name.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Commands for the handsfree service 45

Syntazx:
getNetworkOperator

Response:

getNetworkOperatorReturn operator A string.

Return arguments:

operator: A string containing the name of the current selected network operator.

Example:
Out: getNetworkOperator
Response: getNetworkOperatorReturn Tele2Comviq

9.3 Incoming unsolicited commands

9.3.1 event - New event

Sent by the device on a new event. An example event can be when a call has been setup, when there is
a new incoming call, when a call have been connected, when the charger is attached. See section 4.3.12.

You should listen for events to know when calls are connected, ongoing etc.

Syntax:

event name{:}value

Command arguments:
name: The name of the event.

value: The new value for the event.

Example:
Response: event call{:}1

Indicates that a call is in progress.

9.3.2 callWaiting - New waiting incoming call

This command is sent during an ongoing call when there is a new incoming call.

Syntax:

callWaiting number

Command arguments:

number: The number of the incoming waiting call.

Example:
Response: callWaiting +46701234567

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Chapter 10

Commands for the dun service

10.1 Connection commands

10.1.1 connect - Connect to a device

See first connect function in chapter 6 General commands for the serial, headset, handsfree, avrcp,
obexftp, syncml, avrcp and a2dp service. Connects to a dial-up connection using the nomadic device as

a modem. See Chapter & installation first!

Syntax:

connect devAddr{:}phonenumber{:}username{:}password

Command arguments:

devAddr: The address of the device to connect to.
phonenumber: The number to dial.

username: Username.

password: Password.

Response:

connectReturn

Example:

Out: connect 00:19:b7:7d:02:32{:}*99#{: }{:}

Response: connectReturn

Create a dial-up connection using phone number ¥*99# to device 00:19:b7:7d:02:32 using no password nor

username.

10.1.2 disconnect - Disconnect from a device

See general disconnect function in chapter 6.1.

10.1.3 getStatus - Method name short description

See general getStatus function in chapter 6.1.

46

Chapter 11

Scenarios and usages

This chapter contains a couple of user scenarios and examples.

11.1 Parsing and creating a command

See appendix 14.2 respectively 14.3 for a C# and C++ class for parsing and creating a command.

11.2 Find and automatically connect to a device

This section describes the procedure to find a device, and then automatically discover and connect to it

when it is in range. GUI is a user interface that the driver of the car have access to. The user is the
driver of the car who uses the GUI.

One time bonding;:

8.

9.

. send startDeviceSearch and wait for the newDevice until getDeviceSearchStatus return 0 or until a

specific device is found. Display the device list in the GUI.
Let the user choice a device he/she wants to bond with.

send bond <deviceaddr>{:}<pin> to bond with the device, where <deviceaddr> is the device
address received in step 1. <pin> is a random chosen pin displayed in the GUI.

The user enters the pin displayed in the GUI in his device to accept the bonding.

Wait for bondReturn.

Store the <deviceaddr> in the GUI in a list of accepted devices to automatically connect to.
Use getServices <deviceaddr> to receive services for the device and display for the user.

Let the user chose the services he/she want to connect to.

Store the chosen services in the GUI in a list of services to connect to.

To automatically connect:

1.

Periodically use getServices <deviceaddr> using the device address stored in the ”automatic con-
nect” device list stored in the GUI.

47

48 Scenarios and usages

2. When services are received that match services in the auto connect list, go to step 3. Else go to

step 1.

3. Connect to the service by sending connect <deviceaddr> on the UDP-connection for the current

service.

4. Wait for connectReturn. In case of an error, send disconnect and then go to step 3 and try to

connect again.
5. After receiving a connectReturn, send getStatus to verify that device is connected.
6. At this point, the device is connected.

7. You should use getEncoding to get the current encoding in use to decode SMS-body-text and phone

book entries.

11.3 Reading phone book entries

This section explains how to read entries from the phone book.

This scenario reads all entries from the "missed calls”-list, which is named memoryUnansweredCalls.

Note that we assume that this list exists. To verify, use getLists to get all available lists.

1. First we need to know which indexes there exists entries in the list. Send getListParams memoryU-

nansweredCalls the get list parameters.

2. Wait for getListParamsReturn memoryUnansweredCalls{:} <startIndez>{:}<endIndex>{:}<a>{:}
where <startInder> and <endIndex> are the only arguments we are interested in this example.

Start index and end index are the indexes where the list starts and ends.

3. Now we want to get all entries. Send getList memoryUnansweredCalls{:}<startIndex>{:}<endIndex>,

where the <startInder> and <endIndexr> are values received from step 2.

4. Wait for getListReturn <entryl>:<entry2>.... And parse each entry accordingly. See getList for

more information.

11.4 Reading SMSes

This section explains how to read SMSes.

In this example we want to read all unread SMSes stored in the device-memory. Note that we as-
sume that the device memory are available. To verify, use getSMSStorages readDelete to get all available

memory storages for the readDelete storage, which is the only one we can read from.

1. Send getSMSList device{:}unread to read all unread SMSes from the device memory. Note that all
SMSes will not longer have the status set to unread after this command, because we are reading

them. They will instead have the status set to received.

2. Wait for GetSMSListReturn sms1{:}sms2... and parse the SMS accordingly. See getSMSList for

more information.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Scenarios and usages 49

11.5 Call handling for the handfree service

This section covers some examples for placing regular and third party calls as well as reading/receiving

call and phone statuses.

11.5.1 Placing a call

This is a simple example for placing a call, knowing when the remote party has answered and hanging up.

1. Placing the call, send dial <number> where <number> is the number you want to dial, in interna-
tional format, for example dial +47702319191

2. Wait for dialReturn.

3. To know what’s happening with the call and when the remote party has answered, you need to
listen for incoming events, especially the callsetup and call events. When the call is initiating, the
callsetup is set to value 2 indicating that ”Outgoing call set up is ongoing”. When the remote
device is ringing, callsetup changes to value 3. When the remote device answers the call, callsetup
changes it value to 0, because the device is no longer in a call setup, as the same time as the call

event is set to 1, indicating an ongoing call.

4. When receiving the audioFEvent <status> command, check the status for connected and start read-

ing and sending audio to the UDP-audio pair for the handsfree audio.
5. To hang up, send hangup, wait for hangupReturn and the event call with value 0 indicating that
the call has ended.

11.5.2 Receiving a call

Receiving and answering an incoming call.

1. Wait for an incoming ring or number <nr> command or a callsetup event with value 1. This entire
three indicates an incoming call. Play your own ring signal every ring command, or the in-band-
ring-tone if available, and notify the user of who is ringing by displaying the <nr> number from

the number command.
2. To answer, send answer and wait for answerReturn, a callsetup event of value 0 and a call event of
value 1.
11.5.3 Multiparty calls
In both examples below, we assume that multiparty calls are supported by the device and the network.

Use the getSupportedMutliparty command to check the device support.

This first example shows how to place two outgoing calls and connect them to a conference call, and

then disconnect the first call from the conversation.

1. Establish the first call as in Scenario 11.5.1.
2. Send doMultipartyAction holdAllAcceptOther to hold the ongoing call.

3. Establish the second call the same way as in step 1.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

50 Scenarios and usages

4. To add the first held call to the conversation, send doMultipartyAction addHeld.
5. You are now in a conference call with two parties.

6. The calls receive identification numbers in the order they are established. In this case the first call
has index 1 and the second index 2. We can check the status and indexes of the call by sending
getCallStatus.

7. To release the first call from the conversation, send doMultipartyAction releaseActiveX{:}1, where

the second argument is the index of the call to release.
8. Use getCallStatus to verify that the call is no longer active.

This second example shows how to make a call and receive a new call and switch between them.

1. Establish a call as in Scenario 11.5.1.

2. On a new incoming call during an ongoing call, the callWating <number> is sent from the gateway.

Use the <number> to notify the user of the incoming call.

3. To accept the incoming call and set the current call on hold, send doMultipartyAction holdAllAc-
ceptOther. Use getCallStatus to check verify the status of the calls.

4. To toggle between the calls, send doMultipartyAction holdAllAcceptOther.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Chapter 12

Troubleshooting

12.1 Problems and solutions

12.1.1 How to update a bug in this manual?

This manual is written in LaTeX. The LaTex IDE TeXnicCenter 1 Beta 7.01 together with MikTex 2.7
where used during development. Figures where created in Microsoft Visio 2007.

MikTex (install first): http://miktex.org

TeXnicCenter: http://www.toolscenter.org/

12.1.2 Error messages

12.1.2.1 Invalid argument device. The device cannot be found.

The gateway does not know about the device yet. Search for devices first, or search for services for a
device address.

12.1.2.2 Another audio connection is active to the requested remote device.

There already exists an audio connection to the device you are trying to connect to. This occurs when
you already have an open device connection, either with NDGate or using native Windows Bluetooth
functions, or if you ended a previous connection in the wrong way. Due to the Bluetooth stack instability

issues, the only solution to this is to reboot the computer.

12.1.2.3 An unknown or internal error occured./Unknown error.

This can happen at any time, and is Bluetooth stack related. Try these steps, and stop when the problem

has been solved.
1. Disconnect devices from NDGate by using the disconnect command.
2. Restart Bluetooth stack.
3. Restart nomadic device.
4. Restart NDGate.

5. Restart Computer.

o1

52 Troubleshooting

12.1.2.4 Runtime errors

You may receive runtime errors. These errors should not happen at all.

e ”Semaphore creation failed.” - Semaphore creation in Audio class failed.

e "Waveln or/and WaveOut thread creation failed./Error opening wave playback/input device.” -
Audio class waveln/Out failure. Check that you have Bluetooth audio installed and that your

audio device have recent drivers.

e ”Unable to find bluetooth-device!” - You dont have an bluetooth audio device installed. Reinstall

Bluetooth dongle drivers.

There are more less common runtime errors. When they occur, search for the error message in the source

code to find where it occurred and try to recreate the error.

12.1.2.5 No UDP data is received when using infoTainer.

Restart infoTainer.

12.1.2.6 Awudio routing does not work.

1. Establish an voice call and wait up to 2 minutes before you
2. Check that you have a Bluetooth audio device installed. If not, reinstall Bluetooth dongle drivers.

3. You must set a non-Bluetooth audio device as your primary audio device in windows control panel

-> ”Sound and audio devices”
4. If using infoTainer, make sure that the bt AudioClient is launched.

5. Make sure that the device you are connecting to have granted Bluetooth audio access for the gateway

PC. Check your Bluetooth settings on your device.

6. Try to restart NDGate, your device and the computer.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Chapter 13

Wordlist

e UDP - http://en.wikipedia.org/wiki/User_Datagram_Protocol
e API - http://en.wikipedia.org/wiki/API

e GUI - http://en.wikipedia.org/wiki/GUI

93

Chapter 14

Appendix

14.1 Handsfree workaround

Due to a bug in the Bluetooth stack, the handsfree audio gateway is not always found by NDGate. It
possible to manually add the handsfree service port number as an configuration settings to NDGate. To
do that, you need to know the SCN-port number for the handsfree gateway on each device you want to
enable. Follow this guide to discover the SCN-port number.

You will need to have the application spylite.exe and btHandsfreeFinder.exe.

Step one is to configure spylite.exe.

1. Start spylite.exe.

2. If you get a pop-up saying that you need to logout and login again, close the popup and restart

your computer.
3. After restart, or if you did not get an pop-up, go to menu ”Tools” -> ”Set protocol trace..”

4. Uncheck all items execpt SDP, and select API under ”Trace level settings”. It should look like in
figure 14.1.

5. Leave spylite open.

54

Appendiz 55

Set verbose Level x|

— Trace Setting

— Set Protocol Trace Flag

I~ HCI Surmary [~ HCI Full D ata [~ HID
[~ L2CAP [~ RFCOMM

[~ TCS [~ OBEX

[~ BNEP v E0R

[~ FFP [Ay

— Trace Level Setting

Frie 3 rewm 3
Ciecee [= s [=
romecoms [7] [GAP 2|
v SDP AP ~| I OBEX v[
Foee [o Ftes []
ree [o Fewewm []
[~ L&P Iﬁ [~ BTKemel I j'
[~ SYMC |—;,

SekotAl | Cleardl |

ok I Cancel |

Figure 14.1: Spylite configuration

Step two is to search for handsfree service.

1. Enable Bluetooth on the device you want to add the handsfree for. Also make sure it discoverable.
2. Open btHandsfreeFinder.exe
3. Follow the guide in the window, the same guide as follows here.

4. Disable your Bluetooth stack. Do this by right-clicking on the Bluetooth icon in the taskbar en select
”stop” or ”disable”, or goto the ”Windows start menu”->"Settings”->" Control panel”->"System”-
>"Hardware tab”->"Device manager”, find the Bluetooth device, right-click and disable it.

5. Enable the Bluetooth stack again.
6. Start a device search and wait until the search is complete. You will get a message about that.
7. Select the device you want to search for handsfree on.

8. Goto the spylite.exe application window, click the ”"Erase” button and then press enter in the

btHandsfreeFinder window.
9. Let the application search for services.
10. When done, click the ”Scroll” button in spylite to disable new log-messages.

Step three is to find out the SCN-port number from the log.

1. Goto menu ”Edit”->"Find in trace”. type SERVCLASS_HANDSFREE_AG in the box and click
”find all”.

2. If you don’t find any, the device has no handsfree audio gateway. If you are sure it does, goto to

the top of this section and try again.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

56 Appendiz

3. In the same are around where you found the SERVCLASS_-HANDSFREE_AG, you will see a
couple of ”Sequence entry” entries, in blue color. Manually look and find the text "PROTO-
COL_RFCOMM” as the UUID value, in the same blue text/yellow background area in one of the
sequence entries. When found, the handsfree SCN-port number is the UINT value of the very next

sequence entry. See figure 14.2.

Step four is to configure NDGate.
Open the settings.ini that is in the same directory as the NDGate.exe application. Set the fields hands-
freeDevices and handsfreeSens with the device/scn you want to add, separate each device and SCN you
with comma. Eg, if you want to add two devices, 00:19:B7:7D:02:32 with SCN 13 and 00:1d:28:76:9b:ab
with SCN 9, it should look like this:

handsfreeDevices=00:19:b7:7d:02:32,00:1d:28:76:9b:ab
handsfreeScns=13,9

For the handsfree service in figure 14.2, the SCN-port number is 13.

& BTServer Spy Lite - [Trace] o]]
&f Fle Edt Tooks Help —= x|
| Ht|©[E| #mserveiass v v”
14:26: 45,320 Sequence entry @ 2.1 -~
1d:26:45.320 Descriptor : UOID (0x03)
14:26: 48,320 Length Code : 1 (2 hytes)
1]
14:26: 45,320 Sequence entry @ 2.2
1d:26:45.320 Descriptor : UOID (0x03)
14:26: 48,320 Length Code : 1 (2 bhytes)
14:26:45.320 UUID walue : 4611 (0x1203) SERVCLASE GENERIC_AUDIO
14:26: 45,320 Sequence entry @ L.5
1d:26:45.320 Descriptor : Uint (0x0L1)
14:26: 48,320 Length Code : 1 (2 bhytes)
14:26:45.320 UINT walue : 4 (0x0004) PROTOCOL_DESC_LIAT
14:26: 45,320 Sequence entry : lL.6
1d:26:45.320 Descriptor : Data Ele_Feq (0x06)
14:26: 48,320 Length Code : 5 (In next byte)
14:26: 45,320 Length @ 12
14:26: 45,320 Sequence entry @ 2.1
1d:26:45.320 Descriptor : Data Ele_Feq (0x06)
14:26: 48,320 Length Code : 5 (In next byte)
14:26: 45,320 Length @ 3
14:26: 45,320 Sequence entry @ 3.1 I
1d:26:45.320 Descriptor : UOID (0x03)
14:26: 48,320 Length Code : 1 (2 bhytes)
14:26:45.320 UUID walue : 256 (0x0100) PROTOCOL_LZCAP
14:26: 45,320 Sequence entry @ 2.2
1d:26:45.320 Descriptor : Data Ele_Feq (0x06)
14:26: 48,320 Length Code : 5 (In next byte)
14:26: 45,320 Length @ &5
14:26: 45,320 Sequence entry @ 3.1
Descriptor : UOID (0x03)
Length Code : 1 (2 k
TUID walue 3 (0 L RFCOMM
14:26: 45,320 Sequence entry @ 3.2
1d:26:45.320 Descriptor : Uint (0x0L1)
14:26: 48,320 Length Code : 0 (1 hyte)
UINT walue 1
14:26: 45,320 Sequence entry @ 1.7
1d:26:45.320 Descriptor : Uint (0x0L1) -
4| | 3|
Faor Help, press F1 [(o A

Figure 14.2: Handsfree service spylite sequence entries

14.2 C# command parsing class

14.2.1 File btCommand.cs

using System;
using System.Collections.Generic;

using System.Text;

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Appendiz 57

namespace infoTainer
{
class btCommand
{
private string func;
private List<string> arguments = new List<string>();
private bool bIsValid;

//11711711171777/7/7/7// COMMAND PARSING /////////1/111/1/111/

// Syntax:

// command parami{:}param2{:}param3\r\n -> command and three params

// command parami\r\n -> command and one param

// command parami{:}{:}param3\r\n -> command and three params, param 2 empty

// command\r\n -> command, no params

// command \r\n -> command and one empty param
// command {:}\r\n -> command and two empty params
// command {:}{:F\r\n -> command and three empty params
// command\r\n -> INVALID

// \r\n -> INVALID

public btCommand(string rawData)
{

// First check that the rawData string is valid

// Find \r\n which is the end. Search from begining.
// 1f not found, invalid command.

int end = rawData.IndexOf("\r\n", 0);

if (end < 0) { bIsValid = false; return; }

// Check that the first character starts with a non space
// 1f so, the string is considered valid.
if (end < 1 || Char.IsWhiteSpace(rawData[0])) { bIsValid = false; return; }

// The command is valid.
bIsValid = true;

// Get function.
// function is between start and space or end, whichever comes first.
, 05

int space = rawData.IndexOf (
if (space < 0) space = end;
func = substring(rawData, 0, Math.Min(space, end) - 1);
// Get arguments

// 1f the argument index is O, the argument value is between
// space and either the next sep or end.
// else if the argument is n>0, the argument is between n-1 sep

// and the mext sep or end.
int start = 0;

for (int argIndex = 0; true; argIndex++)
{
// First, special case, find start position.
if (arglndex == 0) start = rawData.Index0f(" ", 0);
else
{
start = rawData.IndexOf("{:}", start);
// add how much longer the sep are from a single char space.

if (start > -1) start += 2;

// Something found? No? Break then.
if (start < 0) break;

start++;

// Next, find next sep or end.
end = rawData.Index0f ("{:}", start);
if (end < 0) end = rawData.IndexOf("\r\n", start);

// End found, substring.

arguments.Add(substring(rawData, start, end - 1));

// Done.
}
public btCommand(string function, List<string> arguments)
{

func = function;

this.arguments = arguments;

public string getFunction()

{
return func;
}
public string getArgument(uint index)
{

if (index >= arguments.Count) return "";
return arguments[(int)index];

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

58

Appendiz

}
public List<string> getArguments()
{
return arguments;
}
public int numArguments()
{
return arguments.Count;
}
public bool isValid()
{
return bIsValid;
¥

public string getCommandString()

{
string rstring = "";
rstring += func;
if (arguments.Count > 0)
{
rstring += " ";
// Special case, add first argument
rstring += arguments[0];
// For each other arguments
for (uint i = 1; i < arguments.Count; i++)
{
rstring += "{:}";
rstring += arguments[(int)il;
¥
}
// Add end
rstring += "\r\n";
return rstring;
}

private string substring(string str, int startIndex, int endIndex)
{

return str.Substring(startIndex, endIndex - startIndex + 1);

14.3 C++ command parsing class

14.3.1 File btCommand.h

#include "stdafx.h"
#include "functions.h"

#pragma once
// Class for creating and parsing a Command received on UDP.

class CbtCommand
{
public:
CbtCommand () ;
// Create a new command from a raw string
CbtCommand (string rawData);
// Create a new command from a function and a list of arguments.
CbtCommand (string function, vector<string> *arguments);
~CbtCommand () ;
public:
// Command handle functions
string getFunction(void);
string getArgument(unsigned int index);
vector<string> getArguments(void);
int numArguments(void);
bool isValid();

string getCommandString(void);

void CommandDEBUGChecker (void) ;
private:

// Variables

string func;

vector<string> arguments;
bool bIsValid;

bH

NDGate User’s Manual Johan Bo6hlin - Volvo Technology

February 3, 2008

Appendiz

99

14.3.2 File bt Command.cpp

#include "stdafx.h"
#include "btCommand.h"

/1117111111717777/1/7// COMMAND PARSING //////////11111/111/

// Syntax:

// command parami{:}param2{:}param3\r\n -> command and three params

// command parami\r\n -> command and one param

// command parami{:}{:}param3\r\n -> command and three params, param 2 empty

// command\r\n -> command, no params

// command \r\n -> command and one empty param
// command {:}\r\n -> command and two empty params
// command {:}{:F\r\n -> command and three empty params

// command\r\n -> INVALID

// \r\n -> INVALID

// Constructor, deconstructor

/%
* Create an empty command.
*/
CbtCommand : : CbtCommand ()
{
this->bIsValid=false;
¥
/%
* Create a new command from a raw data string.
* param rawData the string to parse.
*/
CbtCommand: : CbtCommand (string rawData)
{

// First check that the rawData string is valid

// Find \r\n which is the end. Search from begining.
// 1f not found, invalid command.

string::size_type end = rawData.find("\r\n",0);

if (end == string::npos) { bIsValid = false; return; }

// Check that the first character starts with a non space
// 1f so, the string is considered valid.

if (end<1l || isspace(rawData.at(0))) { bIsValid = false; return; }

// The command is valid.
bIsValid = true;

// Get function.
// function is between start and space or end, whichever comes first.
string::size_type space = rawData.find(" ",0);

func = substring(rawData,0,min(space,end)-1);

// Get arguments

// 1f the argument index is 0, the argument value is between
// space and either the next sep or end.
// else if the argument is n>0, the argument is between n-1 sep

// and the next sep or end.

string::size_type start = 0;

//01234567891011
/7 AHGHE M\

for(int argIndex=0;true;argIndex++)
{
// First, special case, find start position.
if (argIndex == 0) start = rawData.find(" ",0);
else
{
start = rawData.find("{:}",start);
// add how much longer the sep are from a single char space.

if (start!=string::npos) start += 2;
// Something found? No? Break then.
if (start==string::npos) break;
start++;
// Next, find next sep or end.
string::size_type end = rawData.find("{:}",start);

if (end == string::npos) end = rawData.find("\r\n",start);

// End found, substring.
arguments.push_back (substring(rawData,start,end-1));

// Donme.

NDGate User’s Manual Johan Bo6hlin - Volvo Technology

February 3, 2008

60

Appendiz

¥

/*

* Create a new command from a supplied function and a argument list.
* param function the function.

* param inArguments the argument list.

*/

CbtCommand: : CbtCommand (string function, vector<string> *inArguments)
{
// TODO DEBUG check functions for spaces

this->func = function;
this->arguments.assign(inArguments->begin() ,inArguments->end());
this->bIsValid = true;

CbtCommand: : “CbtCommand ()
{

// public functions
/*

* Get the function of the command.

* return the function of the command if the command is valid.
*/
string CbtCommand: :getFunction()
{
return func;
¥
/%
* Get the argument at position index.
* param index the param to get. Index start at 0.
* return the argument.
*/
string CbtCommand: :getArgument (unsigned int index)
{

if (index>=arguments.size()) return "";

return arguments.at(index);

¥
J*x
* Get the arguments.
* return the arguments.
*/
vector<string> CbtCommand::getArguments(void)
{
return arguments;
¥
/%
* Get number of arguments.
* return the number of arguments.
*/
int CbtCommand: :numArguments ()
{
return (int)arguments.size();
¥
/%
* return if the argument is valid or not.
*/
bool CbtCommand::isValid()
{
return bIsValid;
}

// public static functions

/%

* Get the string for this command.

* return the string for this command.
*/

string CbtCommand: :getCommandString()

{

string rstring = "";
rstring.append(this->func);
if (this->arguments.size()>0)
{
rstring.append(" ");
// Special case, add first argument
rstring.append(this->arguments.at(0));
// For each other arguments
for (unsigned int i=1;i<this->arguments.size();i++)

{

rstring.append("{:}");

rstring.append(this->arguments.at(i));

// Add end
rstring.append("\r\n");

NDGate User’s Manual Johan Bo6hlin - Volvo Technology

February 3, 2008

Appendiz

61

return rstring;

14.4 C++ audio streaming

14.4.1 File audio.h

#include "stdafx.h"
#include "udp_shared.h"
#include "udpreceiver.h"
#include "udpsender.h"
#include "Mmsystem.h"
#include <mmreg.h>
#include "Thread.h"
#include "windows.h"
#include <vector>
#include <queue>
#include <list>

using namespace std;
#pragma once

#define SAMPLE_RATE 8000

#define BITS_PER_SAMPLE 16

#define CHANNELS 1

#define AVG_BYTES_PER_SEC ((BITS_PER_SAMPLE/8)*SAMPLE_RATE*CHANNELS)
#define BLOCK_SIZE (AVG_BYTES_PER_SEC/32)

#define NUM_BLOCKS (AVG_BYTES_PER_SEC/BLOCK_SIZE)

#define MAX_DELAY_MSEC 300

#define UPPER_THRESHOLD 3 // Delay threshold

#define LOWER_THRESHOLD 0 // Delay threshold

#define MAX_WOUT_BUFFERS (MAX_DELAY_MSEC/(((double)BLOCK_SIZE/(double)AVG_BYTES_PER_SEC)*1000.0))

class Caudio
{
public:

enum AudioService{asHandsfree,asA2DP, };

enum ErrEnums {eeUdpInInUse, eeUdpOutInUse,eeNotInitilized,eeFailedOpenDevice,eeCriticalError,eeBluetoothDeviceNotFound };

private:
bool getBluetoothDeviceId(UINT #idIn, UINT *idOut);
static DWORD WINAPI WaveInFullThread(LPVOID);
static DWORD WINAPI WaveOutEmptyThread(LPVOID);

public:
Caudio();
“Caudio();
bool start(void);
bool initialize(int udpIn,int udpOut,AudioService as);
bool stop(void);
void getLastError (ErrEnums *err, string *errStr);
void udpReceiveCallback(char * data, int size);

public:

struct WinBuffer

{
WAVEHDR m_WaveHeader; // wave header for the buffer
BYTE m_Data[BLOCK_SIZE];

MMRESULT Prepare (HWAVEIN hWaveIn)

{ // Prepare for playback
ZeroMemory (&m_WaveHeader, sizeof (m_WaveHeader));
m_WaveHeader .dwBufferLength = BLOCK_SIZE;
m_WaveHeader.lpData = (char*) (m_Data);
m_WaveHeader.dwUser = (DWORD)this;

return wavelnPrepareHeader (hWaveln, &m_WaveHeader, sizeof (m_WaveHeader));

MMRESULT Unprepare (HWAVEIN hWaveIn)
{

return wavelInUnprepareHeader (hWaveIn, &m_WaveHeader, sizeof (m_WaveHeader));

MMRESULT Add(HWAVEIN hWaveIn)
{

return waveInAddBuffer (hWaveIn, &m_W ,sizeof (m_|)5

b S

struct WoutBuffer

{
WAVEHDR m_WaveHeader;
BYTE m_Data[BLOCK_SIZE];

NDGate User’s Manual Johan Bo6hlin - Volvo Technology

February 3, 2008

62 Appendiz

MMRESULT Prepare (HWAVEOUT hWaveOut)

{
ZeroMemory (&m_WaveHeader, sizeof (m_WaveHeader));
m_WaveHeader.dwBufferLength = BLOCK_SIZE;
m_WaveHeader.lpData = (charx)(m_Data);
m_WaveHeader.dwUser = (DWORD)this;
return waveQutPrepareHeader (hWaveOut, &m_WaveHeader, sizeof (m_WaveHeader));
}

MMRESULT Unprepare (HWAVEOUT hWaveOut)
{

return waveOutUnprepareHeader (hWaveQut, &m_WaveHeader, sizeof (m_WaveHeader));

MMRESULT Add(HWAVEOUT hWaveOut)
{

return waveOutWrite(hWaveOut, &m_| ,sizeof (m_));
};

struct GlobalVariables

{
queue<WoutBuffer*> playbackList;
queue<WoutBuffer*> freeQutList;

UdpSender * udpsender;
Thread * udpThreadRec;

WinBuffer inBlocks [NUM_BLOCKS];
WoutBuffer outBlocks[NUM_BLOCKS*2];

HWAVEOUT hWaveQut;
HWAVEIN hWaveln;

int numWaveOutBuffers;

int numWaveInBuffers;

bool delay;
bool closing;
bool initilized;
bool started;

};

private:
GlobalVariables globalvars;
string lastErrStr;
ErrEnums lastErr;

HANDLE semGlobal;

HANDLE WaveInFullThreadHandle;
HANDLE WaveOutEmptyThreadHandle;

DWORD WaveInFullThreadID;
DWORD WaveOutEmptyThreadID;

public:
static void managePlaylist(GlobalVariables *global);
static string Merr (MMRESULT m);
static string getSocketErrorString(int error);
static string Report(const char * str)
{
#ifndef DONT_USE_BLUETOOTH
Clogging: :logg(str);
#else
printf("%s\n",str);
#endif

return string(str);

};

14.4.2 File audio.cpp

#include "stdafx.h"

#include "audio.h"
string semAudio;

// Create udp receiver object

template <class T>

class UDPReceiverObject : public IRunnable

{

public:

UdpReceiver *udpRec;
char incommingBuff [UDP_PACK_MAXSIZE];
int lastErrnr;

UDPReceiverObject (int portnr,T *who,void (T::*func)(char * buff, int size)):callee(who),callback(func)
{

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

Appendiz 63

// Create new udp receiver object.

lastErrnr = 0;

udpRec = udpReceiverCreate (portnr,UDPBLOCK) ;
if (udpRec==0) lastErrnr=getRecError();

_continue = true;

int getError() { return lastErrnr; }

virtual unsigned long run()

{
while(_continue)
{
// run this thread procedure
// Read udp data.
int byteReceived = udpReceiverReceive(udpRec,incommingBuff,UDP_PACK_MAXSIZE);
(callee->*callback) (incommingBuff,byteReceived);
}
return 0;
}

virtual void stop()

{
_continue = false;
udpReceiverClose() ;
}
private:
T *callee;

void (T::*callback)(char * buff, int size);
protected:
bool _continue;

b

UDPReceiverObject<Caudio> * udprec;

/7 Constructors and deconstructors
Caudio: :Caudio ()
{

globalvars.initilized = false;
globalvars.started = false;

bool Caudio::initialize(int udpIn, int udpOut, AudioService as)

{
// Create semaphores
semAudio = "semGlobal";
if (as == asHandsfree) semAudio += "Handsfree";

else if (as asHeadset) semAudio += "Headset";

asA2DP) semAudio += 2DP";

else if (as

// Create global mutexes
semGlobal = CreateSemaphore (NULL,1,1,semAudio.c_str());
if (semGlobal==NULL)

{
lastErr = eeCriticalError;
lastErrStr = Report("Semaphore creation failed.\n");
return false;

}

// Create udp-sender
globalvars.udpsender = udpSenderCreate("127.0.0.1",udpOut);
if (globalvars.udpsender==0)

{
lastErr = eeUdpOutInUse;
lastErrStr = Report((char*)getSocketErrorString(getSendError()).c_str());
return false;

}

// Create UDP receiver

try
{
udprec = new UDPReceiverObject<Caudio>(udpIn,this,&Caudio: :udpReceiveCallback);
int errnr = udprec->getError();
if (errnr!=0)
{
lastErr = eeUdpInInUse;
lastErrStr = Report((char*)getSocketErrorString(errnr).c_str());
return false;
¥
// create and start the thread
globalvars.udpThreadRec = new Thread(udprec);
globalvars.udpThreadRec->start () ;
}
catch (ThreadException &e)
{
lastErr = eeUdpInInUse;
lastErrStr = Report((char*)e.Message.c_str());
return false;
}

// Create onWaveInFull and onWaveOutEmpty Threads
WaveOutEmptyThreadHandle = CreateThread(NULL, 0, &Caudio::WaveOutEmptyThread, &globalvars, 0, &WaveOutEmptyThreadID);

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

64

Appendiz

WaveInFullThreadHandle = CreateThread (NULL, O, &Caudio::WaveInFullThread, &globalvars, 0, &WaveInFullThreadID);

if (WaveOutEmptyThreadHandle==NULL || WaveInFullThreadHandle==NULL)

{
lastErr = eeCriticalError;
lastErrStr = Report("Waveln or/and WaveOut thread creation failed.\n");
return false;

}

CloseHandle (WaveOutEmptyThreadHandle) ;
CloseHandle(WaveInFullThreadHandle);

globalvars.initilized = true;

return true;

void Caudio

{

:getLastError (ErrEnums *err, string *errStr)

xerr = lastErr;

errStr->assign(lastErrStr);

Caudio: : “Caudio ()

{

stop();

delete udprec;

delete globalvars.udpThreadRec;
¥

bool Caudio::start()
{

// http://icculus.org/SDL_sound/downloads/external_documentation/wavecomp.htm

if (!globalvars.initilized)

{
lastErr = eeNotInitilized;
lastErrStr = Report("Class not initilized. Call initialize first.");
return false;

}

globalvars.delay = true;
globalvars.numWaveInBuffers = 0;
globalvars.numWaveOutBuffers = 0;

globalvars.closing = false;

MMRESULT mmRC;

WAVEFORMATEX wfex;

wfex.wFormatTag = WAVE_FORMAT_PCM;
wfex.nChannels = CHANNELS;
wfex.nSamplesPerSec = SAMPLE_RATE;
wfex.nAvgBytesPerSec = AVG_BYTES_PER_SEC;
wfex.nBlockAlign = 2;
wfex.wBitsPerSample = BITS_PER_SAMPLE;
wfex.cbSize = 0;

LPWAVEFORMATEX wfx = &wfex;

UINT deviceIdIn = WAVE_MAPPER;
UINT deviceIdOut = WAVE_MAPPER;
UINT waveMapped = CALLBACK_THREAD;
#ifndef DONT_USE_BLUETOOTH
waveMapped = CALLBACK_THREAD|WAVE_MAPPED;
if (!getBluetoothDeviceld(&deviceIdIn,&deviceIldOut))

{
lastErr = eeBluetoothDeviceNotFound;
lastErrStr = Report("Unable to find bluetooth-device!\n");
return false;

}

#endif

// Open wave out device
mmRC = waveOutOpen(&globalvars.hWaveOut, deviceIdOut, (LPWAVEFORMATEX)wfx, (DWORD)WaveOutEmptyThreadID, O, waveMapped);

if (mmRC != MMSYSERR_NOERROR)

{
lastErr = eeFailedOpenDevice;
lastErrStr = Report("Error opening wave playback device: ");
Report (Merr (mmRC) .c_str());
return false;
}

// Open wave in device
mmRC = waveInOpen(&globalvars.hWaveIn, deviceldIn, (LPWAVEFORMATEX)wfx, (DWORD)WaveInFullThreadID, O, waveMapped);

if (mmRC != MMSYSERR_NOERROR)

{
lastErr = eeFailedOpenDevice;
lastErrStr = Report("Error opening wave input device: ");
Report (Merr (mmRC) .c_str());
return false;
}
else
{

NDGate User’s Manual Johan Bo6hlin - Volvo Technology

February 3, 2008

Appendiz 65

waveInStart (globalvars.hWavelIn);

// Add all inbuffers
for (int i = 0; i < NUM_BLOCKS; i++)

{
// prepare and add blocks to capture device queue
globalvars.inBlocks [i] .Prepare (globalvars.hWaveIn) ;
globalvars.inBlocks [i] .Add(globalvars.hWaveIn) ;
globalvars.numWaveInBuffers++;

}

// Setup free list for outbuffers

for (int i = 0; i < NUM_BLOCKS*2; i++)

{
globalvars.outBlocks[i] .Prepare (globalvars.hWaveOut) ;
globalvars.freeQutList.push(&(globalvars.outBlocks[il));

globalvars.started = true;

return true;

bool Caudio::stop()

{
if (!globalvars.initilized)
{
lastErr = eeNotInitilized;
lastErrStr = "Class not initilized. Call initialize first.";
return false;
}
globalvars.closing = true;
if (globalvars.hWaveOut != 0)
{ // do if playback device is open
// Reset playback and close if all buffers are returned
waveOutReset (globalvars.hWaveQut) ;
// Needed because we can be in delay mode
if (globalvars.numWaveOutBuffers == 0) waveOutClose(globalvars.hWaveQut);
}
if (globalvars.hWaveln != 0)
{ // do if capture device is open
waveInReset (globalvars.hWaveln);
if (globalvars.numWaveInBuffers == 0) waveInClose(globalvars.hWaveln);
}
globalvars.started = false;
return true;
¥

void Caudio::managePlaylist(GlobalVariables *global)
{

// Add buffers to WaveOut From buffer

if (global->delay)

{
// Wait until playback buffer has at least UPPER_THRESHOLD
if (global->playbackList.size() >= UPPER_THRESHOLD)
{
// Treshold reached
Caudio: :Report("Delay off\n");
global->delay = false;
¥
}
else
{
// Add all new WoutBuffer:s from the queue
unsigned int playbackListSize = (unsigned int)global->playbackList.size();
for (unsigned int i=0;i<playbackListSize;i++)
{
// Get buffer first in queue
Caudio: :WoutBuffer *woutbuff = (Caudio::WoutBuffer*)global->playbackList.front();
// Prepeare and add to waveout
MMRESULT r = woutbuff->Prepare(global->hWaveOut) ;
woutbuff->Add (global->hWaveOut) ;
global->numWaveQutBuffers++;
// Remove buffer from playlist
global->playbackList.pop();
}
if (global->numWaveOutBuffers<=LOWER_THRESHOLD)
{
// Buffer underrun.
// delay and catch-up
Caudio: :Report("Delay on\n");
global->delay = true;
}
}

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

66

Appendiz

bool Caudio::getBluetoothDeviceId (UINT *idIn, UINT *idOut)
{

WAVEQUTCAPS capsOut;

WAVEINCAPS capsIn;

bool found = false;
for (UINT i=0;i<waveOutGetNumDevs();i++)

{
if (waveOutGetDevCaps ((UINT_PTR)i,&capsOut,sizeof (WAVEOUTCAPS))==MMSYSERR_NOERROR)
{
string name(capsOut.szPname) ;
if (name.find("luetooth")!=string: :npos)
{
*id0ut = i;
found = true;
break;
¥
¥
}

for (UINT i=0;i<waveInGetNumDevs();i++)

{
if (waveInGetDevCaps ((UINT_PTR)i,&capsIn,sizeof (WAVEINCAPS))==MMSYSERR_NOERROR)
{
string name(capsIn.szPname) ;
if (name.find("luetooth")!=string::npos)
{
*idIn = i;
return true;
}
}
}

return false;

string Caudio: :Merr (MMRESULT m)

case WAVERR_SYNC: return "The device is synchronous but waveOutOpen was called without using the WAVE_ALLOWSYNC flag.";

{
switch (m)
{
case MMSYSERR_ALLOCATED: return "Specified resource
case MMSYSERR_BADDEVICEID: return "Specified device
case MMSYSERR_NOERROR: return "success.";
case MMSYSERR_INVALHANDLE: return "Specified device
case MMSYSERR_NODRIVER: return "No device driver is present.";
case MMSYSERR_NOMEM: return "Unable to allocate or lock memory.";
case WAVERR_STILLPLAYING: return "The buffer pointed to by the pwh parameter is still in the queue.";
case WAVERR_BADFORMAT: return "Attempted to open with an unsupported waveform-audio format.";
case WAVERR_UNPREPARED: return "The buffer pointed to by the pwh parameter hasn’t been prepared.";
}
return "Unkown result.";
¥

string Caudio::getSocketErrorString(int error)
{
string errstr;

switch(error)

{

is already allocated.";
identifier is out of range.";

handle is invalid.";

case WSANOTINITIALISED: errstr = "WSANOTINITIALISED"; break;
case WSAENETDOWN: errstr = "WSAENETDOWN"; break
case WSAHOST_NOT_FOUND: errstr = "WSAHOST_NOT_FOUND"; break;

case WSATRY_AGAIN: errstr = "WSATRY_AGAIN";
case WSANO_RECOVERY: errstr =

break;

"WSANO_RECOVERY"; break;

case WSANO_DATA: errstr = "WSANO_DATA"; break;
case WSAEINPROGRESS: errstr = "WSAEINPROGRESS"; break;

case WSAEFAULT: errstr = "WSAEFAULT"; break
case WSAEINTR: errstr WSAEINTR"; break
case WSAEMFILE: errstr = "WSAEMFILE"; break;

case WSAENOBUFS: errstr = "WSAENOBUFS"; break

case WSAEPROTONOSUPPORT: errstr = "WSAEPROTONOSUPPORT"; break;
case WSAEPROTOTYPE: errstr = "WSAEPROTOTYPE"; break;

case WSAESOCKTNOSUPPORT: errstr = "WSAESOCKTNOSUPPORT"; break;

case WSAEACCES: errstr = "WSAEACCES"; break

case WSAEADDRINUSE: errstr = "WSAEADDRINUSE"; break;
case WSAEADDRNOTAVAIL: errstr = "WSAEADDRNOTAVAIL"; break;

case WSAEINVAL: errstr = "WSAEINVAL"; break;

case WSAENOTSOCK: errstr = "WSAENOTSOCK"; break

default: errstr = "default";

+

return errstr;

void Caudio::udpReceiveCallback(char * data, int size)
{
// Get global variables mutex

NDGate User’s Manual

Johan Bo6hlin - Volvo Technology

February 3, 2008

Appendiz 67

HANDLE semGlobal = CreateSemaphore(NULL,0,1,semAudio.c_str());
DWORD semResult = WaitForSingleObject(semGlobal,INFINITE);

if (!globalvars.started)
{
ReleaseSemaphore (semGlobal,1,NULL) ;

return;

// if closing, ignore data
if (globalvars.closing)
{
ReleaseSemaphore (semGlobal, 1,NULL) ;

return;

// Free buffers?

if (!globalvars.freeQutList.empty())

{
// DEBUG TODO only add to playlist when not wout is to overull
if (globalvars.numWaveOutBuffers<MAX_WOUT_BUFFERS)
{
// Get a free buffer
WoutBuffer * woutbuffer = globalvars.freeOutList.front();
// Copy data to playback buffer
memcpy (woutbuffer->m_Data,data,BLOCK_SIZE) ;
globalvars.playbackList . push (woutbuffer) ;
// Remove buffer from free list
globalvars.freeQutList.pop();
// Manage playlist
Caudio: :managePlaylist (&globalvars) ;
¥
}

else Report("No free buffers.\n");

ReleaseSemaphore (semGlobal,1,NULL) ;

DWORD WINAPI Caudio: :WaveInFullThread (LPVOID lpParam)
{
MSG nsg;

Caudio: :GlobalVariables *globalvars = (Caudio::GlobalVariables*)lpParam;

while (GetMessage(&msg, 0, 0, 0) == 1)
{
/* Figure out which message was sent */
switch (msg.message)
{
case MM_WIM_DATA:
// Get global variables mutex
HANDLE semGlobal = CreateSemaphore(NULL,0,1,semAudio.c_str());
DWORD semResult = WaitForSingleObject(semGlobal,INFINITE);

WAVEHDR* pWHDR = (WAVEHDR#)msg.lParam;
Caudio: :WinBuffer * wb = (Caudio::WinBuffer) (pWHDR->dwUser) ;

// Unprepare it and add it to udp out list
wb->Unprepare (globalvars->hWaveln) ;
globalvars->numWaveInBuffers--;

// Send buffer
if (wb!=NULL && !globalvars->closing)
{
udpSenderSend (globalvars->udpsender, (const char *)wb->m_Data,BLOCK_SIZE);
wb->Prepare (globalvars->hWaveIn) ;
wb->Add (globalvars->hWaveIn) ;
globalvars->numWaveInBuffers++;
¥
/*
printf("udp in: %d, udp out: %d, free: %d, play: %d, win: %d, wout: %d\n",
globalvars->udpPckReceived,
globalvars->udpPckSent,
globalvars->freeQutList.size(),
globalvars->playbackList.size(),
globalvars->numWaveInBuffers,
globalvars->numWaveOQutBuffers) ;

*/
if (globalvars->closing) waveInClose(globalvars->hWaveln);

ReleaseSemaphore (semGlobal,1,NULL);

break;

ExitThread(0);

return 1;

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

68 Appendiz

DWORD WINAPI Caudio::WaveOutEmptyThread(LPVOID lpParam)
{
MSG msg;

Caudio: :GlobalVariables *globalvars = (Caudio::GlobalVariables*)lpParam;

while (GetMessage(&msg, 0, 0, 0) == 1)
{
/* Figure out which message was sent */
switch (msg.message)
{
case MM_WOM_DONE:
// Get global variables mutex
HANDLE semGlobal = CreateSemaphore(NULL,0,1,semAudio.c_str());
DWORD semResult = WaitForSingleObject(semGlobal,INFINITE);

WAVEHDR* pWHDR = (WAVEHDR*)msg.lParam
Caudio: :WoutBuffer * wb = (Caudio::WoutBufferx) (pWHDR->dwUser) ;

// Unprepare it and add it to the free list
wb->Unprepare (globalvars->hWaveOut) ;
globalvars->numWaveOutBuffers--;

globalvars->freeQutList.push(wb) ;

// manage playlist
if (!globalvars->closing) Caudio::managePlaylist(globalvars);
else if (globalvars->numWaveOutBuffers<0) waveOutClose(globalvars->hWaveOut);
ReleaseSemaphore (semGlobal,1,NULL) ;
break;

ExitThread(0);
return 1;

14.4.3 File main.cpp

#include "stdafx.h"
#include "audio.h"

int _tmain(int argc, _TCHAR* argv[])
{

Caudio *cad = new Caudio();
cad->initialize(9102,9103,Caudi
// as stand alone.
cad->start();

::asHandsfree); // The last argument does not matter when running

getchar();
cad->stop();

return 0;

}

NDGate User’s Manual Johan Bo6hlin - Volvo Technology February 3, 2008

